Question		ion	Answer	Marks	Guidance
1	(a)	(i)	is a transfer of energy as a result of oscillations (of the source/medium/particles	M1 A1	accept carries/AW accept without the transfer of the
			through which energy is travelling)		medium/particles/matter
		(ii)	a progressive wave transfers energy	B1	or a stationary wave traps energy in pockets/AW
			a progressive wave transfers shape/mormation	ы	shape/information
			either every point on a <i>progressive</i> wave has the same amplitude		or a stationary wave has nodes and antinodes
			or every point on a progressive wave oscillates	B1	or in a <i>stationary</i> wave some points do not move (nodes)
			all points on <i>a progressive</i> wave have different phase (in one λ)	B1	or all points in a <i>stationary</i> wave between nodes are in phase or in adjacent loops are in antiphase max 2 marks
Α	(b)	(shape: sinusoidal and only 2 cycles	B1	
Α		-	amplitude constant at 0.03 m (y-axis labelled)	B1	one correct label of 0.03 m on y-axis is enough to
Α			period 0.2 s (x-axis labelled to 0.4 s)	B1	score mark
			phase: cosine curve	B1	
		(ii) 1	Х	B1	
		2	W	B1	
		3	W and X	B1	
		(iii)	Y vertically up	B1	award 1 mark if directions of both reversed
			Z vertically down	B1	
	(c)		v has increased by 2 so (λ has increased by same factor)	M1	correct reasoning
			new $\lambda = 0.60 \text{ x } 2 = 1.2 \text{ (m)}$	A1	correct answer
Α	(d)		f has increased by 2 so point W has to move same distance in	M1	N.B. zero marks for using $v = f \lambda$ as this is the wave
A			half the time/double the distance in the same time		velocity not the particle velocity
A			therefore speed is doubled to 1.9 (m s ⁻¹)	A1	allow $v = 2\pi f A$ or v proportional to f(mark BOD) accept 1.88 (m s ⁻¹)
			Total	17	
	1		Iotai	17	

Question		n	Answer	Marks	Guidance
2	(a)	(i)	when 2 or more waves <u>meet</u> (at a point)	B1	accept alternative words which mean meet not collide, interfere or superpose
			the (resultant) <u>displacement</u> is equal to the (vector) <u>sum</u> of the <u>displacements</u> of each wave	B1	not amplitude
		(ii)	travel through a vacuum/ at c (in a vacuum)	B1	allow caused by oscillating charges; consist of electric and magnetic fields/oscillations
		(iii)	only transverse waves can be polarised	B1	accept sound waves are longitudinal/not transverse
A A A	(b)	(the waves interfere/superpose producing a stationary wave (with nodes and antinodes) the resultant signal is zero at a node distance from max (antinode) to zero (node) is $\lambda/4 = 0.75$ cm	B1 B1 B1 B1	constructive interference produces maximum (at R) or signals in phase/zero path diff. of waves (at R) destructive interference produces minimum/zero signal or out of phase/ $\frac{1}{2}\lambda$ or phase difference of $\frac{\pi}{2}$ is caused by 0.75 cm shift maximum of 3/4 if nodes and antinodes interchanged QWC mark in bold
A A A		(ii)	emitted waves are polarised (in vertical plane) detected signal from T_2 falls to zero (when T_2 is rotated by 90°) aerial only receives signal from one transmitter (T_1 , signal is halved) (no change in detected signal as) no interference/signals at right angles to each other/AW	B1 B1 B1 B1	plane of oscillation of waves from T ₂ changes/AW max 3 marks from 4 marking points
			Total	11	

Question		on	Answer	Marks	Guidance
3	(a)		light from the two sources must be/slits is coherent only possible to produce constant phase difference using a single source	B1 B1	allow 'has a constant phase difference' for 'is coherent' allow separate light sources are not coherent/do not have a constant phase difference
	(b)		at D: 180° or π rad at B: 0 or 360° or 2π rad	B1 B1	max 1 out of 2 if unit omitted except on zero allow ^c as symbol for rad
	(c)	(2.0 x 10 ⁻³ (m)	B1	allow 1 SF and 2 mm; allow 1.8 or 1.9 mm, only 2 SF
		(ii)	$\lambda = ax/D$ = 0.4 x 10 ⁻³ x 2.0 x 10 ⁻³ /1.5 = 5.3(3) x 10 ⁻⁷ (m)	C1 C1 A1	select formula ecf c(i); substitute answer
	(d)		2 λ 1060 (nm)	C1 A1	ecf c(ii); allow 1000 for 5 x 10 ⁻⁷ allow 1066, 1067, 1070,1100
A A A	(e)	($E = (8.7 \times 10^{-19} - 5.0 \times 10^{-19}) = 3.7 \times 10^{-19} \text{ (J)}$ select E = hc/ λ E = 6.63 x 10 ⁻³⁴ x 3.0 x 10 ⁸ /5.3 x 10 ⁻⁷ = 3.73 x 10 ⁻¹⁹ (J) [or 3.98 x 10 ⁻¹⁹ if using 5.0 x 10 ⁻⁷]	B1 C1 M1 A1	readings from diagram must see substitution ora substitute for E and find λ calculation ora 5.4 x 10 ⁻⁷ (m) N.B. the B mark can be awarded inside the calculation only for the ora method
		(ii)	X in infra-red/ir Z in ultra-violet/uv	B1 B1	allow 1 mark for answers reversed
			Total	16	